Cobots: more cooperation than collaboration

Cobot is the contraction of “collaborative” and “robot”, name and concept of a new kind of robots able to work literally hand-in-hand with humans without a safety fence between them.

fraunhoferCobots are hype and the word tends to become generic for any kind of robot working in close proximity of humans. A study from the German FRAUNHOFER – INSTITUT für Arbeitswirtschaft und Organisation IAO (2016) about first experiences with lightweight robots in manual assembly* distinguishes cooperation from collaboration.

*“Leichtbauroboter in der manuellen Montage – einfach einfach anfangen. Erste Erfahrungen von Anwenderunternehmen

This post is in great part my translation of the original study, with my personal comments.

>Lisez-moi en français

The study summarized different combinaisons in the use of robots near and with human operators, leading the authors to propose 5 classes:

  1. Robotic cell in which a robot operates on its own, fenced-off from humans by a safety fence. In such a case there is no human-robot collaboration.
  2. Coexistence of robot and human, a case in which both are close to each other but without a safety fence, yet have no common workspace. The robot has its own dedicated space distinct from the human one.
  3. Synchronized work: an organization in which human and robot share a common workspace but only one being active at a time. The work sequence is like a choreography between human and robot.
  4. Cooperation: the two “partners” work on their own tasks and can share a common space but not on the same product nor same part.
  5. Collaboration: an organization with common and simultaneous work on the same product or part. Typically the robot handles, presents and holds a part while the operator works on it.

Based on this classification, the studies reveals that collaboration is still seldom. Workers and robots work side by side on their own dedicated tasks, letting me conclude that for the time being, “cobots” are more cooperative than collaborative.

Motivation for investing in this kind of more expensive robots is mainly productivity improvement and secondary objectives are improvement of ergonomics (avoid heavy lifting for example) and testing innovative technologies.

The choice of this kind of solutions requires also new planning and management tools as well as consulting. New standards and regulations are in preparation that must be managed by companies themselves, not the system provider. All this carries additional costs.

Companies with no or only limited experience with these kinds of robots remain hesitant, therefore the authors of the study recommend to implement step wise, starting simple and going from human-robot coexistence to collaboration.

View Christian HOHMANN's profile on LinkedIn

How lean can help shaping the future? Introduction

Lean, no doubt, is a powerful proven business management system with long track record of success stories (and probably as many failed attempts).

In 60 years, Lean made it slowly from Lean Manufacturing to Lean Thinking and Lean Management, from small improvement experiments in industrial workshops to worldwide shared Body of Knowledge.

Despite all the experience gathered and shared, the numerous good books, papers, testimonies or seminars, the application of Lean concepts is still as it was in its early days. Most of those starting Lean initiatives seek cost savings and/or performance improvement and still consider Lean as a well-furnished toolbox. They try to fix broken and poorly designed processes, bailing water faster rather than fixing the leaks.

Chris HOHMANN

Author Chris HOHMANN

Sadly, Lean seldom made it into management age, but keep stuck in the tool age as Jim Womack would put it, being “used” as it was in its early days, or as Mike Rother expresses it: “Lean seems stuck in the 20th Century, for instance focused almost exclusively on efficiency, and that there is a 21st-Century Lean that encompasses a wider range of human endeavor.“

It seems to me that most organizations using Lean run backwards into their future – which is risky and suboptimal enough – and do not anticipate the disruptions that lay ahead.

Innovations in technologies, societal changes and stiffer regulations for example will lead us into a near future where past experience will be only a limited help.

I think about machines able to learn from their own experience, processes able to configure and adjust themselves dynamically to respond to customers’ demands, power plants going into safe mode long before human supervisors would notice any problems, far better sales forecasts, ever smaller production batches and new ways to manufacture, using 3D printing for example.

Factories of the future will have to blend into residential areas, because of lack of space or simply because employees long commuting time is huge waste of time and energy. These factories must be energy efficient, limit all their pollution (noise, fumes, scrap…) and may be mobile device-controlled by only a handful of highly skilled personnel, few workers sharing their job with collaborative robots (cobots).

Science fiction? Not at all, no more. Search the Web for terms like “smart factories” or “industry 4.0” to get a glimpse into the future.

This brings (at least) two questions about Lean:

  1. Will lean survive the fourth industrial revolution? a topic I discuss in >this post<
  2. How Lean can help shaping the future?

This post is an introduction to a prospective thinking about these topics

Related

Feel free to share your thoughts and comments!

Technologies alone will not regain competitive advantage

Smart factories, high level of automation, robots, cobots and industry 4.0 concepts will not be enough to regain competitive advantage for Western European* companies. The reason is very simple, these technologies will be available to everyone and there is no real barrier to entry. These technologies won’t be very expensive and the ease of mastering them is their core claim.

Christian HOHMANNThus, everything else being equal, technologies alone won’t change contestants’ actual competitive advantages once they all acquired and mastered them.

Will the innovations therefore be useless? Surely not, they’ll enhance tools and processes and open new perspectives, but technologies alone won’t regain competitive advantage.

* This post is written from a French perspective which may be valid for Western Europe and United States as well

What can differentiate a competitor from his peers is the attractiveness of its offers, as it already did and still does before the next techno revolution. Attractive offers are based on:

  • Innovative products and services
  • High level of customization
  • High perceived value
  • Fast deliveries

These features are responses to common customers’ expectations like:

  • the fascination for novelty, originality
  • the desire to distinguish from the mass with something custom made
  • the ratio from perceived quality and value to its cost
  • the instant satisfaction of desires

In other words, it is not the means – read technologies – used to please customers that determine performance but the way of using them. The keys to competitive edge do not relate to machinery, automation nor sophisticated IT alone but to smarter use of them.

Hints for future successes, with a bit of high-tech

Analyzing voice of customers, soon greatly improved with big data.

Big data brings all kind of heterogeneous information together, analyze them and refine customers’ preferences better than traditional inquiries could achieve. For a simple reason: inquiries are based on limited questions with limited answer options and too often biased. Respondent keep much of their expectations and desires unspoken, implicit and thus hidden. Big data allows gathering small pieces of information in tweets, facebook posts, online orders, blog comments, etc. and finding correlations that allow to refine the offering to customers’ unspoken and maybe unconscious longings.

Innovation

Innovation is not only responding to customers’ whishes but surprise them with something new, different. Here TRIZ may help. TRIZ is one of these powerful methods and tools that didn’t really make it into the light so far.

TRIZ is a problem solving method based on logic and data, not intuition, which accelerates the project team’s ability to solve these problems creatively. TRIZ also provides repeatability, predictability, and reliability due to its structure and algorithmic approach. “TRIZ” is the (Russian) acronym for the “Theory of Inventive Problem Solving.” G.S. Altshuller and his colleagues in the former U.S.S.R. developed the method between 1946 and 1985. TRIZ is an international science of creativity that relies on the study of the patterns of problems and solutions, not on the spontaneous and intuitive creativity of individuals or groups. More than three million patents have been analyzed to discover the patterns that predict breakthrough solutions to problems.

source: http://www.triz-journal.com/archives/what_is_triz/

The TRIZ pioneers used a big data approach in time big data as technology and tool did not exist. Now that big data is growing mature, methods like TRIZ and QFD (Quality Function Deployment) could be boosted and jointly used for invention.

Speed

Speed, both for launching often new products/services and deliver them fast to market, is a key success factor. Additive manufacturing (3D printing) may be a technical response, but when it comes to speed Lean can help a lot.

Lean is not only about reducing lead time, but also avoiding loops (e.g. rework), unnecessary dwelling (e.g. waiting for next process step or waiting for inventory queue to flush). Lean also cares about doing things right first time, improving in-process quality and doing what is really necessary to deliver value and thus stop over processing and needless tasks. While all this reduces lead time, it reduces also costs and improves quality.

Profitability

Profitability means that all the previous should not be done at the expense of company’s profit. Profit making is essential for company’s sustainability. What’s the use of a one-shot success?

Bandeau_CH11

Robots won’t take your job, investors will

In a previous post I outlined cobots utopia where collaborative robots extend the worker’s abilities and compensate some human weaknesses. In this perspective cobots could keep aging workers on the job and help to improve industrial jobs’ image, often quoted Dirty, Dangerous and Difficult.

The cooperation between robots and workers could increase manpower productivity, hence reducing the cost gap with low-cost countries.

How likely is this to happen?

Let’s put it bluntly: why should an investor invest to compensate the human weaknesses with high-tech, knowing that in the system made of the association of robots and humans, the latter will still be the limiting factor?

Everything else being equal, why should an investor choose the precarious option of backing-up expensive workforce with cobots when a cheaper basic workforce is available somewhere in poorer, not-so-advanced countries?

Everything else being equal, why should an investor choose to invest in a complex combination of man-and-machine when full automation / robotics may soon be / already is (?) available?

Big Data combined with cyberphysical devices will come closer to human intelligence, allowing machines to learn from experience and predict failures, stoppage, breakdowns and act accordingly.

If investors are facing the choice between a cobot assisted human worker and a full automated process, I’m not sure many cobots will sell. What’s sure, the robot makers will sell, either robots or cobots!

Related: Cobots utopia

Cobots utopia

What is a cobot?

A cobot is a collaborative robot, a robot able to work with human, assist them, collaborate with them, without harming them.

Traditional industrial robots are fenced off humans to avoid injuring them while moving or working. Unlike cobots, traditional robots cannot notice human presence and adapt their behavior. Usually a safety barrier will put the robot on hold when trespassed.

Cobots are meant to assist their human colleagues, taking over repetitive, dangerous hard work or extending human abilities e.g. Lifting heavy weight, reduce fatigue, and so on.

Cobots can take over the non-value-adding operation, freeing humans for more valuable tasks. Cobots could boost productivity.

Cobots could be a solution to ease working in general, in some industries where operations are heavy-duty and help aging workforce to keep their jobs. Cobots could serve as mentors and assistants, cybernetic reminders, knowledge base and many more.

Cobots may help overcome the relunctancy for industrial jobs often quoted as Dirty, Dangerous and Difficult.

Cobots utopia

At first. The idea to assist and relief the aging and stressed human workers with a gentle, care taking cybernetic colleague sounds good.

These cobots will compensate many human weaknesses, hence improve quality and productivity. All the chores will be pushed onto them, while the human worker, thanks to his human status and alleged capabilities, is the leader of this pair or pack.

Cobots would remind their human colleague not to forget again this or that operation, adapt their speed to him and go on with work restlessly while he/she enjoys coffee break.

In a process involving humans, the human link is the weakest link of the chain. Unreliable, highly variable in mood and performance, needing periodic rest.

Yet humans have human abilities like adjust to unexpected events, learn from experience or solve problems. These made them unique and valuable in semi-automatic processes despite all other numerous weaknesses. At least until technology catches up.

Related >Examples of cobots

Robot as coworker, a cobot

Automation and robotics are ways for old economies to keep up with competition being inovative and cost effective. Yet aging of population, raising concern about health and safety, stiffer regulations, etc. may welcome the robot as a companion. Those able to work with humans on a shopfloor are called cobots, collaborative-robots.

Collaborative industrial robots are complex machines which work hand in hand with human beings. In a shared work process, they support and relieve the human operator. One example: a robot lifts and positions a heavy workpiece whilst a human worker welds light iron hooks to it. During this task, the operator and the various elements of the robot, such as the robot arm and tool, are in close proximity to each other. The robot and the worker may come into direct contact with each other as a result. A comparable situation can be found with mobile service robots, which are being used in increasing numbers in the proximity of human beings in occupational contexts and in public or private environments.

>Source: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA)

HIRO, a collaborative human-like robot for industrial applications (Japan)

Meet BAXTER, the Cobot (USA)

>Read Robotics Featured Articles – The End of Separation: Man and Robot as Collaborative Coworkers on the Factory Floor

Andrew, cobot for lab (Switzerland)

Related >Cobots Utopia

Bandeau_CH12