7 questions to help you reduce projects‘ duration

On one hand, in current competitive environment, time to market and speed to respond to customers’ needs is a Critical Success Factor, often more important than sales price.

On the other hand, projects templates used in companies have “grown fat” over time with an inflation of additional tasks, milestones and reviews, thus extending project’s’ duration.

>Lisez-moi en français

Why templates grew “fat”

Organizations dealing repeatedly with projects will soon develop templates of Work Breakdown Structures (WBS) holding the most current tasks and milestones. These canvasses speed up somewhat the project initiation and insure some degree of standardization.

Over time though, the copy-pasting from one project to the next, the addition of “improvements” and requirements as well as countermeasures to problems kind of inflate the templates and the projects. This in turn extends the project’s duration as every additional task not only adds its allocated time to completion, but also the safety margin(s) the doer and/or project manager will add on top.

Most of the countermeasures and special reviews were meant to be temporary, only for fixing specific problems. But hassle and lack of rigor soon let them in the next copy-paste template and over time their original purpose gets forgotten and those specific and temporary fixes end up being… standardized!

This is how loads of unnecessary tasks extend project duration without anyone noticing it.

In order to stick to delivering on due date, and in some extend reduce the project duration, Critical Chain Project Management (CCPM) proposes some solutions. Yet those solutions mainly concentrate on a smarter use of the margins without challenging the value and necessity of the tasks themselves.

Therefore, reducing the margins and sharing the risks with a common project buffer, everything else remaining equal, the reduction of the total project duration is limited.

Now, combining CCPM with a Lean-inspired approach, projects can be shortened even more.

Challenging every task

The proposed approach is to scrutinize every task and investigate about its usefulness and its added value, as well as about the allocated resources to achieve it.

The idea is to get rid of unnecessary or low-value adding tasks cluttering the WBS and reduce the workload placed upon the scarcest and most expert resources, reduce the related costs and most of all reduce the time required for completing the whole project.

In a Lean Thinking way these kinds of tasks are wastes of resources and time and should be eliminated. If it’s not possible to eliminate them, is it at least possible to to reduce them to the bare minimum?

Here are 7 questions to help you surface these kind of resource drainers and waste generators in your WBS

1. Is this task really necessary? Why?

As soon as the purpose of one task is not obvious and cannot be simply demonstrated, some investigation is advised. Before rushing to the conclusion it useless and can be eliminated, one must verify that the outcome of this task is not required elsewhere in the project as an answer to some regulatory, standard or technical requirement.

The next question can help to answer this one.

2. What would happen if this task wouldn’t been completed?

A really useful task should answer a need. This one can be explicitly expressed in the requirements or in a procedure for example. It can also be implicit and naturally impose itself.

Most projects embed lots of reviews, gates and reporting points. These are resources and time drainer added by anxious project managers and customers. Yet not every project has very high stakes neither is jeopardized. What can make sense for a very sensitive project is not necessarily required for EVERY project.

What would happen if tasks and deliverables related to these reviews, gates and reporting would be omitted?
If a try shows nothing happens, it’s either an evidence of:

  • the no/low value
  • the lack of rigor in project management and follow-up
  • the lost sense of reviews as a management ritual

I remember a manager having put on hold projects for which project managers didn’t demand reports or reviews several weeks after voluntarily stopping to report progress.

It ultimately led to unclutter the project portfolio of several “nice-to-have” or “to-be-done-when-we-have-time” projects and free valuable capacity for sellable ones.

3. Who will benefit the outcome of the task?

In a well structured WBS no task should end “nowhere”. Who benefits from a task, usually the successor, should be directly readable in the WBS.If it isn’t the case, the value of a task as well as the robustness of the WBS must be challenged.

4. Is this task adding any value?

Value-Added is something the customer is willing to pay for. When assessing the value of a task, the right question is: can the outcome of this task be sold? Is anybody ready to pay for it?

An alternative in product, process or software development exists though, which is creating new, reusable knowledge (Lean Engineering/Lean Product and Process Development). This is considered a kind of investment.

If a task adds nothing worthy to a paying customer nor new knowledge to the company, it adds no value. To keep it or not sends back to question 1.

5. Does this task really require this resource? Why?

Once the task is assessed as useful, the next question is about the allocated resource.

One good practice is to allocate the lowest qualified resources to any task in order to save the more competent and expert resources, which are scarcer and thus more precious, from the mundane tasks that can be achieved by more common and cheaper resources.

If a task requires a scarce, expert resource, the next question is: how come?

Overburdening scarce and precious resources is one major reason for projects taking long time as the flushing of their tasks backlog requires the project managers to level the load, thus push back the completion of staggered tasks.

Many project managers compete to have the best resources allocated to their projects. Success and reliability attract attention and any project manager wants the best team in order to achieve his/her challenge. Always picking the same best ones ends up with overburdening them. Besides, not challenging the lower performers will not help them to improve.

6. Can it be done differently?

The alternate ways to consider here are both technical solutions as well as alternate resources.

  • Technically: can it be done differently so that the scarce bottleneck resource(s) is/are less required? Simpler solution may require less expert resource to implement it, for instance.
  • At the resource level, is it possible to delegate to a lesser constraint resource? Is it possible to subcontract?

These alternates should be considered for the sake of project’s duration reduction first, then for cost efficiency.

7. Must this task be done at that moment/stage of the project?

Some tasks have some degree of liberty with regards to when they must be fulfilled. Moving their relative place in the project structure may help limiting the overload and load levelling.

Wrapping up

Challenging necessity and contribution of all tasks in a project helps reveal those useless and of low added-value. Getting rid of them shortens the project’s duration accordingly, provided those task are on the Critical Chain.

This reservation is a hint about where to look first: the string of tasks on the Critical Chain.

The second benefit of this approach is to reduce the workload of the scarcest, most constrained resources, thus reducing the effect of load-leveling, hence project duration.

View Christian HOHMANN's profile on LinkedIn

Does Value Stream Mapping apply to Product Development?

Value Stream Mapping (VSM) is a great tool to map processes. It started in manufacturing where it is used to understand physical and information flows and quickly spread to administrative processes. It is even used in hospitals.

As Product Development is a process, so yes VSM can be used.

However, development activities have some specificities compared to manufacturing which require to adapt VSM to Development and also bring some limitations to VSM used in Development.

>Lisez-moi en français

The first limitation is similar to manufacturing if the activity is high mix / low volume. In such a case, the specificities may outweigh the commonalities, thus drastically reduce the interest of VSM as the time spent to map the process vs. valuable informations to get from the map isn’t worth it.

If this isn’t the case, and if the Product Development process is underperforming and needs improvement, VSM “manufacturing-style” can be used to map and analyse the development process despite other limitations. It is “good enough” to surface the biggest obstacles to better performance.

Having used VSM to describe and analyze an automotive equipment maker product development process, I could identify improvements leading to a potential 30 to 40 % Lead Time reduction depending of the nature of the project. This is consistent with what I call the Lean rule of thirds, i.e. reducing wastes or improving performance 30%.

Later on, with a more mature Product Development process this type of VSM may show its limitations.

VSM pitfalls and limitations in Development

There are many differences between manufacturing and development. For instance the definition of “value-added” is relatively easy in manufacturing while more elusive in development. Takt time is a key concept for production but does not make sense in development*. Loops are wastes in manufacturing but iterations are valuable in development.

*Takt time in manufacturing is the rate of customers’ demand. In development takt time can be the rate of new projects or product launches decided by the company.

Concurrent activities are seldom in manufacturing but common in Lean Development, and so on.

Therefore the transposition of Lean Manufacturing methods and tools is possible to some extend but with great care and adaptation. One warning about this is to be found in “The Lean Machine” Productivity Press. pp. 131–132:

Key learning about the difference between TPS and LPD is summarized in the advice Jim Womack gives Harley Davidson’s Dantaar Oosterwal; “Don’t try to bring lean manufacturing upstream to product development. The application of Lean in product development and manufacturing are different. Some aspects may look similar, but they are not! Be leary of an expert with experience in lean manufacturing that claims to know product development”.

On the other hand, Allen Ward and Durward Sobek recommend to “learn from Lean Manufacturing to improve labs and prototype shops”, in Lean Product and Process Development, Lean Institute Inc, 2014 second edition p.42.

Other resources about VSM for Product Development exist. Here are only few chosen examples:

Ronald Mascitelli discusses the usage of VSM in his book “Mastering Lean Product Development”, Technology Perspectives 2011, pp. 187-190.

There is a paper of interest by Darwish, Haque, Shehab, and Al-Ashaab, “Value stream mapping and analysis of product development (engineering) processes”  that can be downloaded here:  https://www.researchgate.net/publication/272565743

Finally, the Lean Aerospace Initiative (LAI, MIT) proposed the Product Development Value Stream Mapping (PDVSM) specifically designed for Product Development. The Manual version 1.0 (Sept. 2005) can be downloaded for free from several sources, including MIT:

https://dspace.mit.edu/bitstream/handle/1721.1/83453/PDM_1003_McMan_PDVSM.pdf?sequence=1

Wrapping-up

Value Stream Mapping does apply to Product Development with limitations in mind and/or adaptation to the specificities of development activities. Before rushing to map such a process, give yourself time to consider if the time invested will really be worth it, especially if the process is not likely to be common to many new developments.

VSM is great but is only one tool among others. The value of the analysis does not come from the map but from the “brain juice” the analyst(s) throw in to sift out improvement potential and identify issues and obstacles to overcome.

Feel free to comment and share your thoughts and experience. If you liked this post, share it!


Bandeau_CH160601View Christian HOHMANN's profile on LinkedIn

Critical Chain Project Management alone is not enough

Critical Chain Project Management (CCPM) alone is not enough to drastically reduce a project’s duration and improve the development process efficiency.

CCPM is a proven Project Management approach to ensure a project, any project, will meet its finishing date without compromising quality nor any of the requirements, and even though CCPM can lead to terminate projects earlier, CCPM alone will not squeeze out all improvement potential still hidden in the development process.

What CCPM does well is reconsider in a very smart way the project protection against delaying. Individual protective margins will be confiscated and mutualized in a project buffer, allowing everyone to benefit from this shared and common protection.

There is a bit more than this protective project buffer, but for the sake of simplicity let us just be that… simple.

The visual progress monitoring with a Fever Chart will provide early warning if the project completion date may be at risk and help spot where the trouble is.

Fever Chart

Fever Chart in a nutshell: x axis = project completion rate, y axis = protective buffer burn rate. Green zone = all ok, don’t worry, Amber zone = watch out, the project is drifting and finishing date may be jeopardized. Red zone = alert, project likely to be delayed if no action bring the plot into Amber and preferably Green zone.

After a while, with the proof that all projects can finish without burning up all the protective buffer, meaning ahead of estimated finish date, this arbitrary margin confiscation can be refined and some tasks durations trimmed down while fixing some of the common flaws in the process, like incomplete Work Breakdown Structures, poor linkage between tasks, ill-defined contents or missing requirements.

When done, the projects may be shorter because of lesser of the original protective margins and the other fixes, but the tasks themselves are seldom challenged about their value.

For instance, many of the project’s gate reviews have been set to monitor progress and give confidence to management. They were countermeasures to the drifts and tunnel effects, the period where management is blind about the progress, but with the early warning and easy visual monitoring through the Fever Chart, and more agility in the process, many of these reviews are now useless.

Thus, the time to prepare the documents, KPIs, presentations and attend meetings can be saved for value-creating activities or simply eliminated.

Other tasks may clutter the project, like legacies of fixes of older issues, long obsolete but still kept as the project template still carry them over. Evolution in technologies, unnecessary or suppressed downstream process steps, never fed back may also let unnecessary tasks in the project.

This is where a Lean Thinking approach completes CCPM, challenging the Added-Value of each task, questioning the resources required (both in qualification or competencies and in quantity) and even the linkage to preceding and following tasks.

When considering a development process, embracing Lean Engineering can even go further. Lean Engineering fosters learning and reuse of proven solutions. Libraries of such solutions and ready-for-use modules can save significant time, which can be reinvested in experimenting for the sake of further learning or to shorten projects and engage more development cycles with same resources and within the same time span.


About the authorView Christian HOHMANN's profile on LinkedIn

TOC, Lean and aviation MRO

In a previous post, “CCPM helps shorten aircrafts MRO”, I explained the benefits of Critical Chain Project Management (CCPM) for reducing the aircraft downtime during their mandatory and scheduled MRO.

If CCPM is great and helps a lot meeting the challenge, it will not squeeze out every potential improvement, thus time reduction, on its own.

As I explained in my post Critical Chain and Lean Engineering, a promising pair, “What CCPM per se does not is discriminate added-value tasks and non added value, the wasteful tasks listed in a project in a Lean thinking way.

Conversely, if wasteful tasks remain in the project network, chance are they will be scheduled and add their load (and duration) to the project.

That’s why in aviation MRO (as well as in other businesses), Critical Chain Project Management will not be used as a stand alone but in conjunction with other approaches, like Lean and Six Sigma.

Lean mainly will help to discriminate value-added from non value-added tasks, especially those on the Critical Chain, making them high priorities to optimize, reduce or eliminate.

We did not differently when we started with our client Embraer and while in their service center, I placed Philip Marris in front of the camcorders to present, in situ, two books related to TOC, Critical Chain and Lean in aviation MRO (aircraft Maintenance, Repair and Overhaul).


Note: Critical Chain Project Management is part of the Theory of Constraints Body of Knowledge, hence the title of this post where “TOC” is referring to CCPM.


Chris Hohmann

View Christian HOHMANN's profile on LinkedIn

Critical Chain and Lean Engineering, a promising pair

Critical Chain Project Management (CCPM) has proven its effectiveness to terminate projects on time and even quite often before estimated finish date.

In development, engineering or Maintenance Repair & Overhaul (MRO), using CCPM can give a significant competitive advantage.

It can outperform slower competitors, earn premium for faster achievement and/or allow multiplying projects within similar timeframe and often with same resources.

CCPM is the perfect companion for Lean Engineering, giving the means to win the race-to-market and multiplying new product launches.

True Lean Engineering is something long to develop and “install”, it’s about learning and developing a reusable knowledge base as well as turning engineers into Lean thinkers.

Terminating projects earlier and multiplying them offers the learning opportunities to test and gather knowledge.

CCPM is therefore a good Lean Engineering “forerunner” giving a competitive advantage faster than the sole Lean Engineering initiative.

What CCPM per se does not is discriminate added-value tasks and non added value, the wasteful tasks listed in a project in a Lean thinking way.

Of course, when CCPM takes care about the capacity constrained resources, it invites to check the content of the tasks and scrutinize the proper use of those precious resources, thus calling for Lean-minded scrutiny.

CCPM acts then as a focusing tool for Lean-minded analysis and improvement.

These two, Critical Chain Project Management and Lean Engineering, seem to make a fine, promising pair.
Something to consider.


Bandeau_CH40_smlView Christian HOHMANN's profile on LinkedIn

How lean can help shaping the future – compact factories

The factory of the future has to comply with several constraints, among which the energy efficiency and respect of environment, the latter meaning nature as well as neighborhood.

Factories of the future will probably be close to housing areas, not only because in some areas space is scarce but because commuting is a major source of waste and annoyance.

Factory leanness is directly and positively correlated to its compactness. The more compact the factory the less travel distance within. Distance induces transportation and motion wastes. The shorter the distance, the less these types of waste.

The shorter the distance, the shorter the lead time hopefully.

Compact factories do not allow large inventories. I remember Japanese factories and the mini trucks; if you cannot store, deliver more often! (not sure about energy efficiency and environment friendliness of the trucks milk runs though).

Factories of the future will be built in flow-logic, unlike their centuries-old ancestors in which flows are just nightmares. Actual greenfields easily supercede brownfields and elder facilities on this point.

Best would be scalable units that can be plugged one to another, like plug-and-play shelters having some commodities ducts and cables pre-installed/pre-wired. Among them, Smart Industry or Industrie 4.0 (Europe) standard industrial buses for connecting anything out of the Internet of Things (IoT).

Such shelters could be specialized, like holding 3D printers, laser cutters or 3D scanners ready to use. They could be rented on-demand, installed, connected and used for some period and reused somewhere else after that. A kind of Rent-a-factory..!

Compact factories (in volume) need less heating and air conditioning and less artificial light. Industrial compressed air – if still in use – or other gases need less piping and volume in pipes in compact factory, less compressor units and power.
Air leaks in bigger facilities often require an additional compressor for compensation.
All good points for the sake of energy efficiency.

Most of the principles listed above are lessons learnt from lean experiences with existing factories. In such old-style factories, the improvements are often limited by physical, building construction constraints. Taking these lessons learnt into account is a way lean can help shaping the future.

 Bandeau_CH11View Christian HOHMANN's profile on LinkedIn

How lean can help shaping the future – Value Stream Design

When thinking about planning or shaping the future, most people believe it requires very complicated means, software or science. The reality is deceivingly simple as it takes pens, paper and analytical skills.

Therefore when it comes to answer the question “How lean can help shaping the future”, the simplest and most common way is when people involved in a workgroup of transformation program design a future, improved situation through Value Stream Design (VSD).

From actual to future (improved) state

Depiction and analysis of the actual state of a Value Stream uses Value Stream Mapping (VSM). This mapping uses symbols or pictograms to describe processes, physical and information flows. The actual process, depicted with all its flaws, dysfunctions and improvement potentials is analyzed in search for a better, improved process.

Thus, once the map of actual state is drawn and improvements found, the sketch of the future improved state is done with a similar map, called Value Stream Design (VSD).

VSM and VSD don’t need much high-tech, a roll of brown paper and pens are enough.

The way to bridge the gap between VSM and VSD or to transform the actual state into the future improved one is the action plan.

Sometimes it requires a somewhat more conceptual step in between, like a Goal Tree or a Hoshin Kanri to identify and plan breakthroughs, before listing all necessary underlying actions in an action plan.

Nevertheless, the simplest and most common way for Lean to help shaping the future remains the Value Stream Design (VSD). It is not because it is relatively simple that it is not powerful or interesting.

Bandeau_CH11View Christian HOHMANN's profile on LinkedIn

>More about How Lean can help shaping the future


Lean Engineering and the myth of multitasking

Chris HOHMANN

Multitasking is a praised ability in a world needing constant adjustments. Critics challenge the ability of humans to multitask, while others still believe in and praise it.

I know for long time now that I am no good at multitasking and felt somewhat ungifted until the day I attended a training session in which an experiment settled the case.

Experimenting mono and multitasking performances

The experiment is made of a series of simple single tasks, each having an equal number of elementary operations, such as adding 1 to the previous number, list a series of odd or even numbers, write the letters of the alphabet, etc.

In order to compare the performance between mono and multitasking, the time to complete all task is measured as well as the number of errors.

The first test is done in mono tasking mode, which means the tester does all the basic operations of the task # 1 , then passes to the successive elementary operations of Task No. 2, and so on.
The stopwatch is stopped at the last step of the last task.

The second test is performed in multitasking mode: the timer is triggered then the candidate performs the first elementary operation of the task # 1 , then goes to the first elementary operation of the task # 2 and so on. The stopwatch is stopped at the last step of the last task.

Test results

Compared performances

 Time in
seconds
Total time
monotasking
Total time
multitasking
Rate
multi/mono
Task 1 16
163
10
Task 2
35
170
5
Task 3
60
176
3
Task 4
77
155
2
TOTAL
190
665
3,5

Besides, multitasking led to many errors even the operations were very simple, elementary.

Accepted disturbances

Accepted disturbances are commonplace in our work environment; interruption by unexpected arrival of a visitor, a conversation initiated by a colleague, request for a superior or question from a subordinate, the phone ringing , incoming e -mail , etc.

To add to these, many persons keep checking their smartphone for incoming tweets or e-mail, the sound signal, when activated, irresistibly attracts attention and distracts form probably more valuable occupation.

All these disturbances are derivatives mobilizing our attention and mental capacity. This constant zapping causes the same effects as those described in the experiment; loss of time, deterioration of quality and over consumption of our energy.

Lean Engineering

Striving for Leanness in engineering means striving for efficiency. Accepting being disturbed believing multitasking is an efficient approach to good work is nonsense. All these task switching are just like handoffs in a production line: waste.

————–

To learn more about bad distracting habits, read “The Magic of Doing One Thing at a Time ” ( Harvard Business Review Blog ) post from Tony Schwartz

You may experiment by yourself online with a >simple game<

And watch this video

How lean can help shaping the future? Introduction

Lean, no doubt, is a powerful proven business management system with long track record of success stories (and probably as many failed attempts).

In 60 years, Lean made it slowly from Lean Manufacturing to Lean Thinking and Lean Management, from small improvement experiments in industrial workshops to worldwide shared Body of Knowledge.

Despite all the experience gathered and shared, the numerous good books, papers, testimonies or seminars, the application of Lean concepts is still as it was in its early days. Most of those starting Lean initiatives seek cost savings and/or performance improvement and still consider Lean as a well-furnished toolbox. They try to fix broken and poorly designed processes, bailing water faster rather than fixing the leaks.

Chris HOHMANN

Author Chris HOHMANN

Sadly, Lean seldom made it into management age, but keep stuck in the tool age as Jim Womack would put it, being “used” as it was in its early days, or as Mike Rother expresses it: “Lean seems stuck in the 20th Century, for instance focused almost exclusively on efficiency, and that there is a 21st-Century Lean that encompasses a wider range of human endeavor.“

It seems to me that most organizations using Lean run backwards into their future – which is risky and suboptimal enough – and do not anticipate the disruptions that lay ahead.

Innovations in technologies, societal changes and stiffer regulations for example will lead us into a near future where past experience will be only a limited help.

I think about machines able to learn from their own experience, processes able to configure and adjust themselves dynamically to respond to customers’ demands, power plants going into safe mode long before human supervisors would notice any problems, far better sales forecasts, ever smaller production batches and new ways to manufacture, using 3D printing for example.

Factories of the future will have to blend into residential areas, because of lack of space or simply because employees long commuting time is huge waste of time and energy. These factories must be energy efficient, limit all their pollution (noise, fumes, scrap…) and may be mobile device-controlled by only a handful of highly skilled personnel, few workers sharing their job with collaborative robots (cobots).

Science fiction? Not at all, no more. Search the Web for terms like “smart factories” or “industry 4.0” to get a glimpse into the future.

This brings (at least) two questions about Lean:

  1. Will lean survive the fourth industrial revolution? a topic I discuss in >this post<
  2. How Lean can help shaping the future?

This post is an introduction to a prospective thinking about these topics

Related

Feel free to share your thoughts and comments!

Four uses of an A3 report

When talking about A3 reports, one thinks about problem solving approach. While this Lean tool perfectly fits this purpose, there is more than just a structured and formal approach to problem solving in it.

Bandeau_CH3The four uses of an A3 report

When using A3 reports one soon notices it’s a great media for telling stories.

The content is generally condensed and summarized, yet people familiar with the content can easily develop the story with the help of this kind of ‘script’. Conversely, listeners can follow easily a well structured story backed-up by facts and figures.

The ability to structure and tell a compelling story straight-to-the-point is not that common, therefore A3 reports are great help.

Selling a solution to a problem

Story telling is a marketing exercise, and promoting a solution is trying to sell it to the audience, the stakeholders, the boss, etc. A3 reports are great tools for telling the story starting with a problem and hopefully ending with the its eradication. If the story is well-built, e.g. problem solving approach thorough and robust, the happy end is not only wishful thinking but likely to happen.

Reporting

A problem can take some time to be solved, the reviews while the solving process – solution – is ongoing should be done with the help of A3 reports for the very same reasons as for selling the solution; they’re great support for story telling. This applies for project reviews or policy deployment (cascading objectives and turning them into actions with Hoshin Kanri).

Promoting, suggesting

Any idea or suggestion worth being promoted can be greatly told and advertised with an A3 report or a cascade of A3 reports. Well structured stories inspire confidence and prove the thorough preparation of its promoters. Brilliant ideas often get lost because of the inability of the promoters to sell them, to tell them in an interesting way or failing to inspire the required confidence in both the idea and the carrier(s).

Informing

A3 reports can be used to summarize and structure information that are to be displayed or passed to some audience. While audience engagement is not mandatory in this case, the simpler and logical the message, the better.

More about A3s